Abstract

The present work was carried with new type and promising polymer electrolytes system by development of carboxyl methylcellulose (CMC) doped NH4Br and plasticized with polyethylene glycol (PEG). The sample was successfully prepared via solution casting with no separation phase and good mechanical properties. The electrical conductivity and thermal conductivity of CMC-NH4Br-PEG based PEs system have been measured by the electrical impedance spectroscopy method in the temperature range of 303–373 K. The highest ionic conductivity gained is 2.48 x 10-3 Scm-1 at ambient temperature for sample contain with 8 wt. % PEG. It can be concluded that the plasticized is accountable for the conductance and assist to enhancing the ionic conductivity of the CMC-NH4Br-PEG electrolyte system. The addition of PEG to the CMC-based electrolyte can enhance towards the cation mobility which is turn increases ionic conductivity. The conductivity-temperature of plasticized BdPEs system was found obeys the Arrhenius relation where the ionic conductivity increases with temperature and activation energy for the ions hopping of the highest conducting PEs system only required small value to migrate. The electrical studies show a non-Debye behaviour of BdPEs based on the analyzed data using complex permittivity, e* and complex electrical modulus, M* of the sample at different temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.