Abstract

The role of polyethylene glycol (PEG) in the transformation of Schizosaccharomyces pombe by electroporation is investigated by fluorescein isothiocyanate-dextran uptake and transformation studies. It is shown that when S. pombe cells are electroporated in the presence of PEG, the permeability state created is sustained until removal of PEG. In addition, the permeability of electroporated S. pombe envelopes is further increased with longer incubation times in PEG. The increased permeability is apparently a result of enlarged pores (electropores) due to the presence of PEG. Comparison of a heat pulse transformation protocol with electroporation suggests a second role for PEG in the uptake of macromolecules. Since pores are not thought to be created during a heat pulse, the PEG may be facilitating the uptake of plasmid DNA. This facilitation of uptake would also be expected to affect DNA uptake by electroporated cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.