Abstract

The objective of this in vitro study was to compare, with a threshold value of 200 nm, the surface roughness obtained when using 12 different polishing systems on four different composite resins (microfill, nanofill, and two nanohybrids). A total of 384 convex specimens were made using Durafill VS, Filtek Supreme Ultra, Grandio SO, and Venus Pearl. After sandblasting and finishing with a medium-grit finishing disc, initial surface roughness was measured using a surface roughness tester. Specimens were polished using 12 different polishing systems: Astropol, HiLuster Plus, D♦Fine, Diacomp, ET Illustra, Sof-Lex Wheels, Sof-Lex XT discs, Super-Snap, Enhance/Pogo, Optrapol, OneGloss and ComposiPro Brush (n=8). The final surface roughness was measured, and data were analyzed using two-way analysis of variance. Pairwise comparisons were made using protected Fisher least significant difference. There were statistical differences in the final surface roughness between polishing systems and between composite resins (p<0.05). The highest surface roughness was observed for all composite resins polished with OneGloss and ComposiPro Brush. Enhance/Pogo and Sof-Lex Wheels produced a mean surface roughness greater than the 200-nm threshold on Filtek Supreme Ultra, Grandio SO, and Venus Pearl. Data showed that there was an interaction between the composite resins and the polishing systems. A single polishing system does not perform equally with all composite resins. Except for Optrapol, multi-step polishing systems performed generally better than one-step systems. Excluding Enhance/Pogo, diamond-impregnated polishers led to lower surface roughness. Durafill VS, a microfill composite resin, may be polished more predictably with different polishers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.