Abstract

The error curve for the rational best approximation of ƒ ∈ C[−1, 1] is characterized by the well-known equioscillation property. Contrary to the polynomial case, the distribution of these alternations is not governed by the equilibrium distribution. It is known that these points need not be dense in [−1, 1]. The reason is the influence of the distribution of the poles of rational approximants. In this paper, we generalize the results known so far to situations where the requirements for the degrees of numerators and denominators are less restrictive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.