Abstract

The influence of polaron effects on the effective potential of weak-coupling exciton in semiconductor quantum dots (QDs) is studied based on the Lee-Low-Pines-Huybrechts variational method. The results show that the effective potential of the exciton consists of three parts: coulomb potential, induced potential and confining potential. Numerical calculations for the GaAs quantum dot, as an example, are performed. The result indicates that the effective potential of the exciton increases with the electron-hole distance. It is found that the polaron effects have remarkable influence on the states of the exciton: helpful to the stability of the light-hole exciton, but unfavorable to the stability of the heavy-hole exciton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.