Abstract
Using an electromagnetic approach based on three-dimensional Maxwell's equations coupled with electron density equation, we investigate femtosecond laser interaction with fused silica containing randomly distributed inhomogeneities. By irradiating with linearly, radially, azimuthally, circularly and mixed polarized beams, we visualize and analyze the resulting electron density distributions in glass. The numerical calculations demonstrate the local material excitation to the polarization state of light and underline the nanostructure orientation perpendicular to the local laser polarization. The advantages of using azimuthal- and radial-variant polarizations to produce the nanogratings with desirable characteristics are discussed. Circularly polarized beams are shown to be, on the contrary, beneficial to prevent the nanostructure self-organization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.