Abstract

The Brownian rotation of a nearly spherical gold particle capped with ligands can be observed in the correlation profile of the intensity of the two-photon excited luminescence. Here we report on a multi-parameter study of the luminescence properties, including spectral and polarization analysis of the signal at the single particle level. First, the data confirm the role of the radiative de-excitation of the surface plasmons in the luminescence process. Secondly, the results obtained at low power indicate that the capped particle in water can be approximatively described as a spherical rotor acting in the far-field as a point-like absorption and emission dipole of fixed directions. In addition, we show that the dynamics of the ligands, induced by the heat transfer from the particle to its environment, can be partly controlled by the choice of excitation wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.