Abstract

The band gap of a new two-dimensional phononic crystal was studied by the plane-wave expansion method. The two-dimensional phononic crystal is formed by square-shape array geometry of iron cylinders with square cross section inserted in an epoxy resin. The band gaps of different structures were calculated such as defect-free, single cavity crystal point defect states, crystal point defect states with (10) direction coupling, crystal point defect states with (10) direction next-nearest-neighbor coupling, and crystal point defect states with (11) direction next-nearest-neighbor coupling. Compared with that of defect-free, it is conclude that point defect is beneficial to the production of band gaps. The bandwidth of point defect is about 5 times larger than that of the defect-free crystal with the filling fraction F=0.4. In addition, the maximum number of band gap is in the crystal point defect states with (10) direction next-nearest-neighbor coupling. It will provide a theoretical reference for the manufacture of phononic crystal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call