Abstract

Studies on the effect of plasma protein binding on biosynthetic hydrogels on the long term cell viability and infiltration onto the hydrogel scaffolds were carried out. Three hydrogels, PALG–P (PALG-co-PEGDA), PALG–PA (PALG-co-PEGDA-co-AA) and PALG–PB (PALG-co-PEGDA-co-BMA) were prepared using a copolymer of poly(propylene fumarate)-co-alginate (PALG) and cross-linker PEGDA and vinyl monomers. The nature of vinyl monomer largely influences the nature of water (structured bound water/freezing free water) present in the hydrogel and also the adsorption of protein, cell growth and infiltration. The extensively bound structured water as observed with butyl methacrylate based poly(propylene fumarate)-co-alginate-PEGDA hydrogel (PALG–PB) do not favour absorption of proteins and sustain cell growth and infiltration for long duration. Though moderately bound structured water favours absorption of protein moderately as observed with poly(propylene fumarate)-co-alginate-PEGDA hydrogel (PALG–PB), it does not sustain the cell growth. However, the minimally bound structured water favours absorption of protein extensively as observed with acrylic acid based poly(propylene fumarate)-co-alginate-PEGDA hydrogel (PALG–PA) and sustains the cell growth and infiltration for long duration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.