Abstract

This study investigated the effects of radial oxygen loss (ROL) of three different plants on nitrobenzene (NB) wastewater treatment and bioelectricity generation performance in constructed wetland-microbial fuel cell (CW-MFC). ROL and root biomass from wetland plants showed positive effects on NB wastewater compared to unplanted CW-MFC. Scirpus validus exhibited higher tolerance to NB than Typha orientalis and Iris pseudacorus at 20−200 mg/L NB. As NB concentration reached 200 mg/L, the CW-MFC with Scirpus validus had relatively high DO (2.57 ± 0.17 mg/L) and root biomass (16.42 ± 0.18 g/m2), which resulted in the highest power density and voltage (19.5 mW/m2, 590 mV) as well as NB removal efficiency (93.9 %) among four reactors. High-throughput sequencing results suggested that electrochemically active bacteria (EAB) (e.g., Geobacter, Ferruginibacter) and dominant NB-degrading bacteria (e.g., Comamonas, Pseudomonas) could be enhanced by wetland plants, especially in CW-MFC with Scirpus validus. Therefore, Scirpus validus was a good option for simultaneously treating NB wastewater and producing bioelectricity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call