Abstract
AbstractWe present an analysis of the optical properties of single InGaN quantum dots (QDs) grown by MOVPE. The samples were structured into mesas by focused‐ion‐beam etching and investigated by micro‐photoluminescence measurements. The QDs are characterized by the high temperature stability of their emission up to 150 K. Furthermore, the polarization of individual QD emission lines was analyzed giving an insight into their geometrical shape. Time‐resolved microphotoluminescence measurements on the excitonic and biexcitonic transition of a single quantum dot yields a radiative recombination lifetime of 2.06 ns for the exciton. The data can be fitted by a simple model for cascaded emission confirming the expected refilling of the excitonic state by biexcitonic recombination. In addition, the influence of piezoelectric fields on the exciton and biexciton emission and on their binding energy in single QDs was investigated. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.