Abstract

Varroa destructor parasites Apis mellifera larvae following the interception of the semiochemicals involved in bee communication; thus, the semiochemical availability and distribution pathways take place within different physicochemical environments. The structure of 172 molecules with semiochemical activity on Varroa destructor was used to compute the representative physicochemical descriptors of the thermodynamic partition among different physicochemical environments: vapor pressure (V), Henry's coefficient (H), water solubility constant (W), octanol-water partition coefficient (O) and organic carbon partition coefficient (C); VHWOC. The principal component analysis (PCA) and hierarchical clustering of VHWOC descriptors allowed us to establish the trend in availability and distribution of the semiochemicals resulting in a 4 classes model of physicochemical environments: Class 1, Soluble/Volatile; Class 2, Soluble; Class 3, Contact; Class 4, Adsorbed/Volatile. Our results suggest that semiochemicals can transit between different thermodynamic equilibrium phases depending on environment conditions. The classification prediction of the model was tested on 6 new molecules obtained from ketonic extracts of L5 Apis mellifera drone larvae; locating them in class 4, which was consistent with their molecular structure. This study can be the starting point for the design of synthetic semiochemicals or for the control of Varroa destructor. In addition, the method can be used in the analysis of other semiochemical groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call