Abstract
Environmental Fluid Dynamics Code, a numerical estuarine and coastal ocean circulation hydrodynamic and eutrophication model, was used to simulate the distributions of dissolved oxygen (DO), salinity, water temperature, and nutrients in the Caloosahatchee River Estuary. Modeled DO, salinity, and water temperature were in good agreement with field observational data from the Florida Department of Environmental Protection and South Florida Water Management District. Sensitivity analyses identified the effects of river discharge, atmospheric winds, and tidal forcing on the spatial and temporal distributions of DO. Simulation results indicated that vertical mixing due to wind forcing increased the bottom DO concentration. River discharge enhanced stratification in deep locations but propagated vertical mixing in the shallow upper estuary. Finally, tidal forcing heavily influenced bottom layer DO concentrations throughout the whole river estuary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.