Abstract

Lignocellulosic residues are potential sources of renewable energy, but these materials have low energy density and undesirable properties for energy use. For this reason, pelleting is a viable alternative for the biomass energy valorization because it produces high-energy-density solid biofuels. The aim of this research is to evaluate the physical, chemical, and energetic characteristics of pellets produced with lignocellulosic biomass blends (elephant grass [EG], eucalyptus wood [EW], and sugarcane bagasse [SB]) for bioenergy generation. For biomass and pellets, bulk and energy densities, chemical compositions, and heating values, were determined. For pellets, the mechanical durability, fines content, diametrical compression, diameter, length, and unit density were measured. Pellets presented increased heating value, bulk and energetic density, and reduced moisture content. The highest absolute ash contents were found in the compositions and pellets produced with high amounts of EG (2.89%–6.48%). The reduction of EG in the blends has improved the energy properties of pellets. A 55% reduction of ash content was observed in the pellets produced with 50% EG and 50% EW compared with the pellets produced with 100% EG. The pellets produced with biomass blends obtained better energy and mechanical performances when compared with those produced with only one biomass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.