Abstract

The role of phosphorus (P) in the heterogeneous nucleation of eutectic silicon (Si) and the evolution of eutectic grains in hypoeutectic aluminum-silicon alloys were investigated. Systematic additions of P in the range of 0.5 to 20 ppm to Al-7 wt pct Si alloys of different purities have shown that the morphology of the eutectic Si changes from a fine plate- to a coarse flake-like structure. The growth of eutectic grains was investigated by interrupting the eutectic reaction by quenching experiments. Moreover, the macroscopic growth mode of the eutectic grains was characterized by electron backscatter diffraction. An increase in P concentration from 2 to 3 ppm resulted in a transition of the macroscopic growth mode of the Al-Si eutectic in high purity alloys from growth with a planar front with a strong dependence of the thermal gradient, to nucleation in the vicinity of the primary Al dendrites and subsequent growth of distinct eutectic grains. It is suggested that AlP particles are the key impurities acting as potential nucleation sites for eutectic Si. This is further substantiated as with increasing P concentration nucleation and growth of the Al-Si occurred at higher temperatures close the equilibrium Al-Si eutectic solidification temperature at 850 K (577 °C). In addition, the recalescence undercooling ΔT R,eu was reduced from 4.5 K (0.5 ppm P) to 1.5 K (20 ppm P) in high purity alloys. This was accompanied by a drastic increase of the nucleation rate of the eutectic grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.