Abstract

The microbial activity of soil plays an important role in the regulation of the transformation of carbon (C) and phosphorus (P). However, the activity of soil microbes is strongly related to the type of land-use system. The present work aimed to compare the microbial activity and metabolic responses of three different land-use systems to P (0 to 600 mg kg−1 of dry soil) and C additions in an Oxisol of the Brazilian savannah. The land-use systems studied were savannah vegetation (SV), 32-year-old pine plantation (PP), and 11-year-old no-tillage system (NT). The following analyses were carried out: amount of C carbon dioxide (CO2) evolved, total organic carbon (TOC), total glucose (TG), microbial biomass carbon (MBC), and metabolic yields (Y) from P and C additions to the soil. The different land-use systems affected the respiratory activity of microbiota, indicating an increase in SV and a decrease in PP when compared to the SV system under incubation for 17 days. The addition of P resulted in an increase of respiratory activity. The responses were adjusted by the Michaelis–Menten equation for all three land-use systems. The greatest TOC and lowest MBC were observed in NT and PP, respectively, when compared to SV. However, a lower content of TG was observed in NT in comparison to SV. Under bioassay conditions, the results confirm the greater microbial demand for P in PP and SV than in NT. The NT system showed greater metabolic yields when glucose was applied to the soil, suggesting that the response of microbiota in this system depends on easily available forms of C, as shown by the sugar content. The results showed expressive metabolic differences among the systems, suggesting that different soil uses change the dynamic of the responses of soil microorganisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call