Abstract

The detrimental effects of phosphate anion adsorption on the oxygen reduction reactions (ORR) on low index Pt single crystal electrodes were studied in 0.1 M perchloric acid by using a hanging meniscus rotating disk electrode in the presence of varied concentrations of H(3)PO(4). The kinetic current for ORR decreased dramatically on Pt(100), Pt(110), Pt(111), and PtSn(111) even with the addition of a small amount (1 mM) of H(3)PO(4) into the perchloric acid solution, most probably due to the adsorption of phosphate anions onto the Pt active sites that impeded the electroreduction of O(2). Remarkably, the extent of decline was found to vary with the specific single crystal surface, following the order of Pt(111) > PtSn(111) > Pt(110) ∼ Pt(100). Consistent behaviors were also observed in Tafel analysis and in electrochemical impedance spectroscopic measurements. Within the present experimental context, Pt(110) was found to be the optimal crystal surface for ORR in phosphoric acid fuel cells with the smallest charge transfer resistance, whereas the poisoning effects of phosphate anion adsorption were the most pronounced on Pt(111), most likely because the phosphate anions primarily adsorbed on the 3-fold sites on the Pt(111) faces, as manifested in in situ X-ray absorption spectroscopic measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.