Abstract

Influence of the anisotropy of elastic energy on the phonon transport has been investigated in single- crystal nanofilms of Fe, Cu, MgO, InSb, and GaAs materials used for spintronic instruments and devices in the Knudsen flow regime of phonon gas. The dependences of the lattice thermal conductivity and lengths of free paths of phonons for all acoustic modes on the geometric parameters of the films have been considered for low temperatures with the dominance of the diffuse scattering of phonons at the boundaries. Physical aspects of the propagation of phonon modes in the films have been analyzed. It has been shown that the anisotropy of phonon transport in single-crystal films is due to the features of the propagation of phonon modes in elastically anisotropic films with a different relationship of the geometric parameters. The directions of heat flow and orientations of the film planes that yield the maximum and minimum thermal conductivity of phonons in film planes have been determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call