Abstract

We measured the moving time average (MTA) of the phrenic neurogram before and after removal of phasic afferent information from the lungs, chest wall, and oscillations in blood gases by using constant-flow ventilation (CFV). Anesthetized dogs were studied at various levels of steady-state and progressive hypercapnia during spontaneous breathing and during CFV. When steady-state and progressive hypercapnia were compared, the frequency and height of the MTA phrenic neurogram were independent of the rate of induction of hypercapnia during each mode of ventilation. During spontaneous ventilation, the response to hypercapnia comprised mainly an increase in frequency with only a slight increase in the amplitude of the MTA phrenic waveform. During muscular paralysis and CFV, the responses were similar to those observed after vagotomy with mainly an increase in the amplitude and only a small increase in frequency. For both spontaneous breathing and CFV, increases in frequency were achieved mainly by a shortening in expiratory time with the inspiratory time remaining relatively constant. Our data support the concept of a centrally patterned respiratory generator, whose inherent pattern is modified by phasic feedback from peripheral receptors mainly of vagal origin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call