Abstract

Monoclonal antibodies are widely used for the treatment of various diseases, and because therapeutic monoclonal antibodies are stored in an aqueous solution or in a lyophilized state, the preparation of a stabilizing formulation that prevents their deterioration (degradation and aggregation) is crucial. Given the structural similarities of the immunoglobulin G (IgG) framework regions and a diversity of only four subclasses, we aimed to find common conditions that stabilize many different antibodies. In this study, we analyzed the effect of pH (the most critical factor in establishing a stable formulation) on human monoclonal antibodies from subclasses IgG1, IgG2, and IgG4, all of which have been utilized in antibody therapeutics. We found that human IgGs are stable with minimal heat-induced degradation and aggregation at pH 5.0-5.5 irrespective of their subclass. We also found that IgG1 is more susceptible to fragmentation, whereas IgG4 is more susceptible to aggregation. This basic information emphasizing the influence of pH on IgG stability should facilitate the optimization of formulation conditions tailored to individual antibodies for specific uses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.