Abstract

The solubility of weakly basic drugs in passage through gastrointestinal tract leads to their pH-dependent release from extended release formulations and to lower drug absorption and bioavailability. The aim of this study was to modulate the micro-environmental pH of hypromellose/montanglycol wax matrices and to observe its influence on the release of weakly basic drug verapamil hydrochloride (VH) with a pH-dependent solubility with respect to gel layer formation and its dynamics. For this study, malic and succinic acids differing in their solubility and pKa were selected as pH modifiers. The dissolution studies were performed by the method of changing pH. Within the same conditions, pH, thickness, and penetration force of the gel layer were measured as well. From the PCA sub-model, it is evident that a higher acid concentration ensured lower gel pH and conditions for higher drug solubility, thus creating larger gel layer with smaller rigidity, resulting in higher VH release during the dissolution test. Incorporation of stronger and more soluble malic acid (100mg/tablet) created the most acidic and the thickest gel layer through which a total of 74% of VH was released. Despite having lower strength and solubility, matrices containing succinic acid (100mg/tablet) released a comparable 71% of VH in a manner close to zero-order kinetics. The thinner and less rigid gel layers of the succinic acid matrices allowed an even slightly faster VH release at pH6.8 than from matrices containing malic acid. Thus acid solubility is more parametrically significant than acid pKa for drug release at pH6.8.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.