Abstract

In chemical regulation, e.g. the EU Water Framework Directive, REACH, or the Pesticide Directive, standardized ecotoxicological tests are applied to evaluate and rank the hazard of compounds and for deriving environmental quality standards (EQS). Standardized test methods prescribe fixed testing conditions e.g. specific temperature, pH, light intensity etc. However, environmental conditions under which the organisms live are rarely identical to the standard conditions. Thus, the ecotoxicity of compounds found in standard test is not only a function of the compounds inherent physico-chemical properties but is also affected by test conditions. It is therefore important to study the effect of changes in test conditions in order to get reliable input ecotoxicity data for assessing the potential risk posed by a compound. The objective of this study was to investigate the implications of changing test conditions on the toxicity of four sulfonylurea herbicides (SUs). The toxicity of the four SUs towards Lemna gibba was investigated at three pH levels (6, 7.5 and 9), at two temperatures (15 and 24 °C) and two light regimes (continuous and 12:12 h light:dark cycle) The EC50 increased twofold to tenfold for the four SUs when pH was increased from 6 to 9. Decreasing the temperature from 24 to 15 °C or introducing a dark:light cycle did not cause any trends in changes in toxicity. The results show that test conditions can have an effect on the toxicity and this should be considered when the standard test results are used for derivation of EQS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call