Abstract
Understanding the impact of pH and ionic strength on the physicochemical and structural properties of soy proteins at subunit level is essential for design and fabrication of many plant-based foods. In this study, soybean β-conglycinin and its subunit fractions αα′ and β were dispersed in solutions with different pH values (3.7, 7.6, and 9.0) at low (5 mM NaCl) and high (400 mM NaCl) ionic strengths, respectively. The solubility, rheology, particle size, zeta potential, microstructure, secondary structure, and tertiary structure of the different dispersions were analyzed using a range of analytical methods. The β-conglycinin, αα′- and β-subunits aggregated near the isoelectric point (pH 3.7). Increasing the ionic strength led to the assembly of more homogeneous units. An increase in ionic strength at pH 7.6 and pH 9.0 led to electrostatic screening, which promoted dissociation of the aggregates. The β-subunit showed a greater sensitivity to pH and ionic strength than the αα′-subunits. Based on the evidence from a range of analytical methods, the highly hydrophilic extension region of the αα′-subunits played an important role in determining the stability of the β-conglycinin dispersions under different environmental conditions. Moreover, the N-linked glycans appeared to impact the conformation and aggregation state of the β-conglycinin.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.