Abstract

Perfluorochemical (PFC) emulsions are particulate in nature and, as such, can cause delayed febrile reactions when injected intravenously. This study investigated the influence of emulsion particle size on intravascular retention and on body temperature changes in unrestrained conscious rats. Concentrated (60% to 90% w/v) emulsions based on perflubron (perfluorooctyl bromide [PFOB]) with mean particle sizes ranging from 0.05 microns to 0.63 microns were tested. Rats were fitted with a chronic jugular catheter and an abdominal body temperature telemetry unit. Fully recovered, conscious rats were monitored for 24 hours after infusion (dose = 2.7 g PFC/kg). Emulsion blood half-life (T1/2) was determined from blood perflubron levels measured by gas chromatography. Emulsions with a particle size of 0.2-0.3 microns caused fevers (6 to 8 hour duration) which peaked at 1-1.5 degrees C above normal (approximately 37.5 degrees C). Fevers could be blocked by i.v. treatment with either cyclooxygenase inhibitors (ibuprofen) or corticosteroids (dexamethasone). Both intensity and duration of the temperature response, quantified by area under the temperature curve, was decreased significantly for emulsions with a particle size < or = 0.12 micron. Blood T1/2 varied inversely with particle size, and was 3 to 4 fold longer for emulsions with a mean particle size < or = 0.2 micron. Thus, smaller emulsion particles more effectively evaded the reticuloendothelial system, which resulted in longer intravascular retention, less macrophage activity, and reduced febrile responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.