Abstract
Novel 3D printing techniques enable the development of medical devices with drug delivery systems that are tailored to the patient in terms of scaffold shape and the desired pharmaceutically active substance release. Gentle curing methods such as photopolymerization are also relevant for the incorporation of potent and sensitive drugs including proteins. However, retaining the pharmaceutical functions of proteins remains challenging due to the possible crosslinking between the functional groups of proteins, and the used photopolymers such as acrylates. In this work, the in vitro release of the model protein drug, albumin-fluorescein isothiocyanate conjugate (BSA-FITC) from differently composed, photopolymerized poly(ethylene) glycol diacrylate (PEGDA), an often employed, nontoxic, easily curable resin, was investigated. Different PEGDA concentrations in water (20, 30, and 40 wt %) and their different molecular masses (4000, 10,000, and 20,000 g/mol) were used to prepare a protein carrier with photopolymerization and molding. The viscosity measurements of photomonomer solutions revealed exponentially increasing values with increasing PEGDA concentration and molecular mass. Polymerized samples showed increasing medium uptake with an increasing molecular mass and decreasing uptake with increasing PEGDA content. Therefore, the modification of the inner network resulted in the most swollen samples (20 wt %) also releasing the highest amount of incorporated BSA-FITC for all PEGDA molecular masses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.