Abstract

An understanding of the muscle power contributions to the crank and limb segments in recumbent pedaling would be useful in the development of rehabilitative pedaling exercises. The objectives of this work were to 1) quantify the power contributions of the muscles to driving the crank and limb segments using a forward dynamic simulation of low-power pedaling in the recumbent position, and 2) determine whether there were differences in the muscle power contributions at three different pedaling rates. A forward dynamic model was used to determine the individual muscle excitation amplitude and timing to drive simulations that best replicated experimental kinematics and kinetics of recumbent pedaling. The segment kinematics, pedal reaction forces, and electromyograms (EMG) of 10 muscles of the right leg were recorded from 16 subjects as they pedaled a recumbent ergometer at 40, 50, and 60 rpm and a constant 50 W workrate. Intersegmental joint moments were computed using inverse dynamics and the muscle excitation onset and offset timing were determined from the EMG data. All quantities were averaged across ten cycles for each subject and averaged across subjects. The model-generated kinematic and kinetic quantities tracked almost always within 1 standard deviation (SD) of the experimental data for all three pedaling rates. The uniarticular hip and knee extensors generated 65% of the total mechanical work in recumbent pedaling. The triceps surae muscles transferred power from the limb segments to the crank and the bi-articular muscles that crossed the hip and knee delivered power to the crank during the leg transitions between flexion and extension. The functions of the individual muscles did not change with pedaling rate, but the mechanical energy generated by the knee extensors and hip flexors decreased as pedaling rate increased. By varying the pedaling rate, it is possible to manipulate the individual muscle power contributions to the crank and limb segments in recumbent pedaling and thereby design rehabilitative pedaling exercises to meet specific objectives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call