Abstract

Passivating contacts for silicon solar cells can be fabricated by depositing a layer of intrinsic amorphous silicon (a-Si) by the plasma-enhanced chemical vapor deposition (PECVD) onto an oxidized silicon wafer, followed by a thermal POCl3 diffusion process. This article describes the influence of the main PECVD parameters, power and pressure, on the electrical performance of such phosphorus-doped polysilicon (doped-Si/SiOx) passivating contacts. We characterize their properties in terms of the passivation quality and carrier selectivity for different PECVD powers and pressures. The deposition power settings from 350 to 800 W are tried, the highest iV oc value of 721 mV is achieved at a power of 500 W. The higher deposition powers (≥650 W) lead to blistering issues and possible interface damage, while a lower deposition power (350 W) leads to incomplete decomposition of the precursor gas, resulting in a lower passivation quality. Meanwhile, the power has a marginal impact on the contact resistivity. On the other hand, the deposition pressure has only a slight impact on the passivation quality, while significant changes are observed on the contact resistivity. A lower pressure (0.1 mbar) leads to a higher contact resistivity, while the low and consistent contact resistivity values of 5.8 mΩ·cm2 are obtained at the pressures above 0.2 mbar.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call