Abstract

Platelet endothelial cell adhesion molecule (PECAM‐1) has been implicated in angiogenesis through processes that involve stimulation of endothelial cell motility. Previous studies suggest that PECAM‐1 tyrosine phosphorylation mediates the recruitment and then activation of the tyrosine phosphatase SHP‐2, which in turn promotes the turnover of focal adhesions and the extension of filopodia, processes critical to cell motility. While these studies have implicated PECAM‐1‐dependent signaling in PECAM‐1‐mediated cell motility, the involvement of PECAM‐1 ligand binding in cell migration is undefined. Therefore to investigate the role of PECAM‐1 binding interactions in cell motility, mutants of PECAM‐1 were generated in which either homophilic or heparin/glycosaminoglycan (GAG)‐mediated heterophilic binding had been disabled and then expressed in an endothelial cell surrogate. We found that the ability of PECAM‐1 to stimulate cell migration, promote filopodia formation and trigger Cdc42 activation were lost if PECAM‐1‐dependent homophilic or heparin/GAG‐dependent heterophilic ligand binding was disabled. We further observed that PECAM‐1 concentrated at the tips of extended filopodia, an activity that was diminished if homophilic, but not heparin/GAG‐mediated heterophilic binding had been disrupted. Similar patterns of activities were seen in mouse endothelial cells treated with antibodies that specifically block PECAM‐1‐dependent homophilic or heterophilic adhesion. Together these data provide evidence for the differential involvement of PECAM‐1‐ligand interactions in PECAM‐1‐dependent motility and the extension of filopodia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.