Abstract

The influence of peat soil environment (PSE) on the mechanical properties of cement-soil in the area around Dianchi Lake and Erhai Lake in Yunnan Province has attracted much attention. This study explores the change law of cement-soil UCS in the PSE, and provides guidance for the development and sustained usage of peat soil foundation. The paper discusses the preparation of cement-soil samples by adding humic acid (HA) and cement to cohesive soil with low organic matter content (blending method) and soaking it in fulvic acid (FA) solution and deionized water (steeping method) to simulate the actual working environment of cement-soil. Unconfined compressive strength (UCS), acid consumption, ion leaching, scanning electron microscope (SEM), and X-ray diffraction (XRD) tests are carried out on cement-soil samples soaked for 90 days. The results show that HA can significantly reduce the UCS of cement-soil. FA can reduce the UCS of cement-soil when the content of HA is less than 18%. However, when the amount of HA is more than 18%, the UCS of cement-soil increases slightly. FA makes the deformation and failure type of cement-soil gradually change from brittle shear failure to plastic shear failure. FA reacts with the cement hydration products in the sample so that the cumulative acid consumption of the cement-soil sample continues to increase, and the dissolution of Ca2+, Mg2+, Al3+, and Fe3+ in the sample increases the ion concentration of the soaking solution. In addition, SEM and XRD show that HA can increase the macropores and connectivity of cement-soil, while FA fills part of the pores of the wetting layer. In the PSE, FA can strengthen the inner structure of HA particles and fill and cement the layers of cohesive particles, enhancing the construction of cement-soil with HA content greater than 18%, so that its UCS is relatively improved. However, when the amount of HA is less than 18%, there are more small pores in the cement-soil. The interaction between FA and HA in the cement-soil is weak. The influence of FA on cement-soil is mainly a weakening effect, and its UCS is relatively reduced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call