Abstract

The interfacial reaction between Ni and Sn-3Ag-0.5Cu-xPd alloys (x = 0 wt.% to 1 wt.%) at 250°C and the mechanical reliability of the solder joints were investigated in this study. The reaction and the resulting mechanical properties were both strongly dependent on the Pd concentration. When x was low (≤0.2 wt.%), the reaction product at the Ni/Sn-Ag-Cu-xPd interface was a layer of (Cu,Ni)6Sn5. An increase of x to 0.3 wt.% produced one additional (Pd,Ni)Sn4 compound that was discontinuously scattered above the (Cu,Ni)6Sn5. When x was relatively high (0.5 wt.% to 1 wt.%), a dual layer of (Pd,Ni)Sn4-(Cu,Ni)6Sn5 developed with the reaction time. The results of the high-speed ball shear (HSBS) test showed that the mechanical strength of the Ni/Sn-3Ag-0.5Cu-xPd joints degraded with increasing x, especially when x reached a high level of ≥0.3 wt.%. This degradation corresponded to the growth of (Pd,Ni)Sn4 at the interface, and joints easily failed along the boundaries of solder/(Pd,Ni)Sn4 and (Pd,Ni)Sn4/(Cu,Ni)6Sn5 in the HSBS test. The (Pd,Ni)Sn4-induced joint failure (Pd embrittlement) was alleviated by doping the solder with an appropriate amount of Cu. When the Cu concentration increased to 1 wt.% and the Pd concentration did not exceed 0.5 wt.%, the growth of (Pd,Ni)Sn4 could be thoroughly inhibited, thereby avoiding the occurrence of Pd embrittlement in the solder joints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.