Abstract

Lead sulfide quantum dots-doped titanium dioxide nanotubes (PbS QDs-doped TNTs) were successfully prepared by the hydrothermal and impregnation methods. A thin layer of titanium dioxide (TiO2) comprising of PbS QDs-doped TNTs was applied as an electron transport layer (ETL) in order to improve the planar perovskite solar cell efficiency. The role of incorporating a high surface area of one-dimensional nanotube structure of TiO2 in the conventional TiO2 layer provided a special unidirectional charge transport and a high charge collection. Moreover, doping PbS QDs onto the surface of TNTs modified the electronic and optical properties of the ETL by downshifting the conduction band of TiO2 from −4.22 to −4.58 eV, therefore promoting the driving force of an electron injection to the transparent conductive electrode. By varying the concentration of PbS QDs-doped TNTs dispersed in 2-butanol from 0.1 to 0.9 mg/mL, a concentration of 0.3 mg/mL PbS QDs-doped TNTs was the optimum concentration to be mixed with TiO2 solution for the ETL deposition. The best perovskite solar cell performance with the optimum loading of PbS QDs-doped TNTs provided 14.95% power conversion efficiency, which was increased from 12.82% obtained from the cell with pristine TiO2 film as ETL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.