Abstract

BackgroundOne problem in the mobilization of patients with neurological diseases, such as spinal cord injury, is the circulatory collapse that occurs while changing from supine to vertical position because of the missing venous pump due to paralyzed leg muscles. Therefore, a tilt table with integrated stepping device (tilt stepper) was developed, which allows passive stepping movements for performing locomotion training in an early state of rehabilitation. The aim of this pilot study was to investigate if passive stepping and cycling movements of the legs during tilt table training could stabilize blood circulation and prevent neurally-mediated syncope in healthy young adults.MethodsIn the first experiment, healthy subjects were tested on a traditional tilt table. Subjects who had a syncope or near-syncope in this condition underwent a second trial on the tilt stepper. In the second experiment, a group of healthy subjects was investigated on a traditional tilt table, the second group on the tilt ergometer, a device that allows cycling movements during tilt table training. We used the chi-square test to compare the occurrence of near-syncope/syncope in both groups (tilt table/tilt stepper and tilt table/tilt ergometer) and ANOVA to compare the blood pressure and heart rate between the groups at the four time intervals (supine, at 2 minutes, at 6 minutes and end of head-up tilt).ResultsSeparate chi-square tests performed for each experiment showed significant differences in the occurrence of near syncope or syncope based on the device used. Comparison of the two groups (tilt stepper/ tilt table) in experiment one (ANOVA) showed that blood pressure was significantly higher at the end of head-up tilt on the tilt stepper and on the tilt table there was a greater increase in heart rate (2 minutes after head-up tilt). Comparison of the two groups (tilt ergometer/tilt table) in experiment 2 (ANOVA) showed that blood pressure was significantly higher on the tilt ergometer at the end of head-up tilt and on the tilt table the increase in heart rate was significantly larger (at 6 min and end of head-up tilt).ConclusionsStabilization of blood circulation and prevention of benign syncope can be achieved by passive leg movement during a tilt table test in healthy adults.

Highlights

  • One problem in the mobilization of patients with neurological diseases, such as spinal cord injury, is the circulatory collapse that occurs while changing from supine to vertical position because of the missing venous pump due to paralyzed leg muscles

  • Patients with spinal cord injuries are disposed to the occurrence of circulatory collapse when changing from a horizontal to a vertical position because of the lack of sympathetic activity and the missing contractions of leg muscles in the lower extremities that normally act as muscle pumps [7,8]

  • There was an obvious increase in heart rate in the first 6 minutes after changing the position from supine to upright

Read more

Summary

Introduction

One problem in the mobilization of patients with neurological diseases, such as spinal cord injury, is the circulatory collapse that occurs while changing from supine to vertical position because of the missing venous pump due to paralyzed leg muscles. Several studies have confirmed that lack of movement leads quickly to profound negative physiological and biochemical changes in all organs and systems of the body [15] It is important for patients suffering from diseases such as stroke, spinal cord and traumatic brain injury to be mobilized at an early state of rehabilitation [6]. Patients with spinal cord injuries are disposed to the occurrence of circulatory collapse when changing from a horizontal to a vertical position because of the lack of sympathetic activity and the missing contractions of leg muscles in the lower extremities that normally act as muscle pumps [7,8] This instability of the circulatory system occurs at an early stage of rehabilitation and leads to delayed functional training of these patients. An overactivity of the spinal sympathetic system could take place, which can lead to vasoconstriction and hypertension [9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call