Abstract

ABSTRACT Aluminium alloys are employed in advanced applications due to their desirable combination of low density, high strength, durability, availability, and cost vs. competing materials. The characteristics described above can be increased further by employing aluminium matrix composite materials reinforced with harder particles. The hybrid aluminium alloy (Al7075) composite was made in an electric resistance furnace using the sand mould process and reinforced with alumina (Al2O3) and boron carbide (B4C) particles. The purpose of this research to investigate the mechanical characteristics of Al7075-Al2O3-B4C hybrid composites with stable Al2O3 weight percentages (4%) and varied B4C weight percentages (2–6%). Mechanical characteristics includes tensile and compressive strength, hardness, and microstructure analysis were evaluated on the pure and cast specimens. In this study, which followed the ASTM standard, the mechanical characteristics of Al7075 alloy hybrid composites were examined experimentally and validated using FEA. The results showed that when hard ceramic particles (Al2O3/B4C) were added to matrix alloy (Al7075), mechanical characteristics such as compressive strength and hardness improved while tensile strength was reduced. The static structural tensile test was successfully simulated in ANSYS. It was observed that both FEA results and analytical results were correlated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.