Abstract
Controlling the magnetic properties of a material is of great importance for spintronics and magnetoelastic devices. We studied effect of reduced particle size on structural, dielectric and magnetic properties of SmFeO3 nanoparticles prepared by co-precipitation method (SFO-C) and by combustion (SFO-S). Reduced particle size modified interesting magnetic features of SmFeO3. Temperature dependent magnetic study reveal significant enhancement in magnetization reversal temperature and drop in spin reorientation transition temperature. The signature of spin reorientation transition for SFO-C (~ 300 nm) is marked at ~ 450 K, while this temperature drops down to ~ 400 K for SFO-C (~ 50 nm). The magnetization reversal temperature is achieved at 30.5 K for SFO-C, much higher than 4 K, reported for the single crystal and bulk SmFeO3. The presence significant anomalies in the temperature dependent dielectric behavior of SmFeO3 samples across spin reorientation transition temperature indicate magneto electrical coupling. Strong exchange–bias effect is observed at low temperature for both the samples. The lowering of spin reorientation/switching transition temperature due to reduction in particle size and the signature of magnetoelectric coupling at this temperature are useful for room temperature devices. The observed experimental results establish that the spin switching properties of SmFeO3 can be modified for practical applications in devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.