Abstract

Polymer degradation usually plays a crucial role in drug release from sustained release polyester systems, therefore in order to elucidate the mechanism governing release, it appears essential to analyse the in vitro degradation behaviour of these devices. In this study the influence of processing conditions, particle characteristics and release media temperature on the degradation of PLGA spherical particles were examined. It was found that a linear relationship between the degradation rate and particle size existed, with the larger particles degrading fastest. In smaller particles degradation products formed within the particle can diffuse easily to the surface while in larger particles degradation products have a longer path to the surface of the particle during which autocatalytic degradation of the remaining polymer material can occur. The influence of release media temperature on the degradation of PLGA particles was also examined. At lower incubation temperatures PLGA microparticles showed an induction period after which polymer degradation proceeded. The rate of polymer degradation was found to increase with increasing incubation temperature. The polymer erosion profile was fitted to the Prout–Tompkins equation and the rate constants were used to determine the activation energy of PLGA hydrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.