Abstract

We use numerical simulations based on the discrete element method (DEM) to study the response of a cuboidal assembly of spherical (diameter d) or spheroidal particles to uniaxial compression. This study examines the influences of slight deviations from the spherical shape of particles or of the thickness of cuboidal samples on the packing and mechanical characteristics of the assembly. The spheroidal particles were fabricated by the multisphere method. Eight different particle shapes were considered, each with the same volume and with aspect ratios α from 1.0 to 2.5. The final vertical height and larger horizontal depth of the cuboidal deposit were 15d, whereas the thickness ranged from 1.025d to 10d. Upon increasing the assembly thickness or deviating from a spherical shape, numerical examinations by the DEM revealed clear differences in the packing structure and uniaxial compression of assemblies of spheroidal particles. The departure from a spherical shape results in intense changes in contact network, which is manifested as changes in the volume fraction, mean number of contacts per particle, and ordering of the deposits. For the more elongated particles, the pressure ratio as a function of spheroid aspect ratio reached nearly constant values regardless of the sample thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.