Abstract

The shear-induced migration of dense suspensions with continuously distributed (polydisperse) particle sizes is investigated in planar channel flows for the first time. A coupled lattice Boltzmann–discrete element method numerical framework is employed and validated against benchmark experimental results of bulk shear-induced migration and segregation by particle size. Distinct dependence on the particle size distribution is shown in the flowing (non-plugged) regime (where the bulk solid volume fraction, $\bar{\phi}$ , $\leq 0.3$ ) resulting from a dual dependence on the particle self-diffusivity and local rheology imposed by the particle pressure gradient. Close agreement between statistically equivalent bidisperse and polydisperse suspensions suggests that the bulk migration, and by extension the shear-induced diffusivity, is completely characterised by the first three statistical moments of the particle size distribution. For both bidisperse and polydisperse suspensions in the plugging regime, $\bar {\phi }\geq 0.4$ , the smallest particles preferentially form the plugs, causing the largest particles to segregate to the channel walls. This effect is accentuated as $\bar {\phi }$ increases and has not been reported in the literature hitherto. It is proposed that smaller particles preferentially form the plugs due to their higher shear-rate fluctuations, which completely dominate particle motion near the plug where the mean shear rate vanishes. Finally, increasing inertia causes a greater bulk migration towards the channel walls, but increased mid-plane migration for the largest particles due to the dependence of the particle self-diffusivity on the particle Reynolds number. As $\bar {\phi }$ increases shear-induced migration dominates and these inertial effects disappear, as does dependence on the particle size distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call