Abstract
AbstractThe influences of particle breakage on the position of the critical state line (CSL) were systematically investigated in this paper through a series of large-scale triaxial compression tests on Tacheng rockfill material (TRM). It was found that the critical-state stress ratio of TRM (i.e., the gradient of the CSL in the p−q space) was approximately regarded as a constant. In the e−logp space, the CSL of TRM descended with a decrease in the initial void ratio, whereas the gradient of the CSL was constant. A procedure was established for evaluating the critical state point at a same particle breakage, which comprised the breakage critical state line (BCSL). An increase of the particle breakage led to not only a vertical translation but also a rotation on the BCSL of TRM in the e−logp space, which was similar to the observation of Dog’s Bay sand. Consequently, the initial gradation (or the corresponding initial void ratio) was the dominant factor that affected the position of the CSL of TRM in the e−...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.