Abstract

PurposeThis paper aims to provide a detailed study on the influence of slip flow and thermal jump over mixed convection flow along an exponentially stretching surface. Also, impacts of suction/blowing, volumetric heat source/sink and velocity ratio parameter will be studied in this analysis.Design/methodology/approachThe modeled governing equations for the assumed problem are dimensional nonlinear partial differential equations in nature. To reduce these equations, non-similar transformations are used to get the dimensionless nonlinear partial differential equations. Then, quasi-linearization technique is used to linearize these non-dimensional nonlinear partial differential equations. Finally, an implicit finite difference scheme is used to discretize the resulting equations.FindingsThe physical explanations are provided for the variations of various non-dimensional governing parameters over the velocity and temperature profiles. Also, the effects of these dimensionless parameters on skin friction coefficient and heat transfer rate are scrutinized in a manner which highlights their physical interpretation. The detailed discussion exhibits the fact that the streamwise co-ordinate velocity ratio parameter, partial slip parameter and the thermal jump parameter have significant influence over the flow and thermal fields.Originality/valueThis work has not been reported in the literature to the authors’ best of knowledge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call