Abstract

In this work, we develop an age-structured model (based on delay-differential equations) to investigate the dynamics of host–parasitoid systems in which adults are the target of parasitism. The rare previous work dealing with such interactions assumes that hosts are functionally dead as soon as they are attacked. We relax this assumption and show that low reproduction rates of parasitized hosts can promote stability at the expense of cyclic behavior (either long term or generation cycles). Higher reproduction rates make the regulation of the host population by parasitoids impossible. As it is the case in models in which adults are subjected to attacks but do not reproduce, our model generates generation cycles for a larger set of parameter values than in models in which juveniles are attacked.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.