Abstract

With better biocompatibility, bioresorbable poly (L-lactic acid) (PLLA) helical stents are expected to replace the commonly used metallic stents. However, due to the great difference between the material properties of PLLA and those of metals, the current research results on mechanical properties of stents will not be applicative. In this article, the effects of i on the radial compression performance and bending stiffness of PLLA helical stents were systematically studied, and the effect of temperature on the radial compression performance of the helical stent was investigated. The findings obtained indicate that the reduction of initial pitch angle and initial diameter can enhance the radial compression performance. The reduction of initial pitch angle and the increase of initial diameter can weaken the bending stiffness of the helical stent. Moreover, the increase of temperature will reduce the radial stiffness and peak compression force of the helical stent. A favorable agreement between the theoretical and experimental results of radial compression properties was found in stents with the initial pitch angle between 14° and 21° and all initial diameters. This work can provide suggestions for the use of the theoretical formula in structure design of the helical stent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.