Abstract
Paper electronics has emerged as an ecofriendly, light, low-cost, and recyclable material for the fabrication of flexible and printed transistors. In this study, we present fully printed organic electrochemical transistors using an active layer of PEDOT:PSS, carbon electrodes, cellulose-based electrolyte, and three different papers as substrates: bond, vegetal, and Lumi Silk, relating the electrical properties to the different morphologies of the paper surfaces. Each paper presents different regularity, diffusion capabilities, and roughness, with significant influence on the transistor performance. The more organized and smooth the surface, the better the electrical characteristics, the best of these being the Lumi Silk, with higher I on/I off ratio of 46, on-current of 8.3 × 10−5 A, V on of 1.3 V, and power gain of 43.5 dB associated with ultra-low hysteresis of 0.1 V, high transconductance of −57.3 μS, and suitablity for flexible electronics and sensors applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.