Abstract

AbstractThe tropospheric westerly jet is a key feature of Southern Hemisphere climate. In recent decades the jet strengthened in austral summer (December–February [DJF]) and moved poleward owing to the Antarctic ozone hole. Future jet trends will be influenced by recovery of the Antarctic ozone hole and greenhouse gas (GHG) forcing. Here, we examine 21st century projections of ozone, temperature and winds in the sixth Coupled Model Intercomparison Project models with (CHEM) and without (NOCHEM) interactive chemistry. NOCHEM models use an ozone data set that was produced with GHG forcings inconsistent with those used by CHEM models, leading to less ozone recovery in the Antarctic springtime lower stratosphere. This propagates to different stratospheric temperature projections and DJF westerly winds: NOCHEM models project a 78 ± 52% stronger increase in DJF westerly wind speeds than CHEM models under the high GHG emissions scenario SSP585. Our results show the importance of simulating stratospheric ozone accurately for Southern Hemisphere climate change projections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.