Abstract

We analyzed the crystallographic c-axis tilt of (001) Y2O3 films grown on biaxially textured Ni–5%W tapes under different oxygen flux conditions. Results show that different tilting mechanisms were effective in films with different oxygen stoichiometry. Moreover, the structure of the film/substrate interface investigated by transmission electron microscopy, and the residual strain of the film investigated by x-ray diffraction were also dependent on the film oxygen content. Although the oxygen stoichiometric Y2O3 sample exhibited a coherent film/substrate interface and the sharpest out-of-plane texture, the films grown under reduced oxygen pressure exhibited a smaller overall c-axis tilt due to formation of interface dislocations and regions in which the film oxygen vacancies ordered to form a lattice superstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call