Abstract

SiC is a widely used material. Understanding how oxygen content affects the SiC structure and properties is crucial. In this paper, heat treatment was used to prepare SiC powder samples with different oxygen contents, which were doped with AlN and ZrB2 and were densified by pressureless sintering at 2050 °C. The effect of oxygen content on the sintered SiC structure was determined by X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive spectroscopy. The results indicated that the oxygen content influenced the SiC phase composition, grain boundaries, and densification. Additionally, the interaction between oxygen defects and AlN played an important role in sintering. The nanoindentation, alternating-current impedance, and thermal conductivity of the densified SiC specimens were also evaluated to elucidate the influence of the oxygen content on the densified-SiC functional properties. The results revealed that the oxygen content affected all the measured mechanical, electrical, and thermal properties. Furthermore, surface oxygen impurities suggested that oxygen content had similar critical effects on both the densified SiC structure and properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call