Abstract

Biohybrid fuels are a promising solution for making the transportation sector more environmentally friendly. One such interesting fuel candidate is 1,3-dioxolane, which can be produced from inedible biomass. However, very little kinetics data are available for the low-temperature oxidation of this fuel molecule. To remedy this, we present the reaction kinetics of O2 addition to 1,3-dioxolanyl radicals in this work. All energies have been calculated at the DLPNO-CCSD(T)/CBS//B2PLYPD3BJ/6-311+g(d,p) level of theory. Temperature- and pressure-dependent reaction rate constants have been calculated with the RRKM/master equation method. The effects of heterocyclic oxygen atoms and ring strain on the low-temperature oxidation of 1,3-dioxolane are also compared to that of similar fuel molecules containing five heavy atoms: cyclopentane, tetrahydrofuran, and diethyl ether (DEE). The ring-opening β-scission reactions of the dioxolane hydroperoxy species are found to be the most dominant pathways following the oxidation of 1,3-dioxolanyl radicals. The heterocyclic oxygen atoms in 1,3-dioxolane weaken its C-O bonds, which leads to low barrier heights of the ring-opening reactions. Ring strain in 1,3-dioxolane increases the barriers for isomerization reactions of peroxy radicals compared to the similar reactions of DEE, which has a chain structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call