Abstract
We report on the magnetic properties of small neutral suboxide ConOm (n = 5-18 and m = 0-10, m ≤ n) clusters produced by laser vaporisation and gas aggregation. Their magnetism is probed experimentally by means of Stern-Gerlach magnetic deflection. The results imply that the cobalt atoms couple ferromagnetically not only in pure Con clusters, as known from previous investigations, but also in their oxidized counterparts. It was found that the magnetic moment per cobalt atom is mostly enhanced in the oxide clusters with respect to the pure cobalt clusters and generally increases with the oxygen content in the studied composition range. The spin magnetism of selected clusters is also investigated by density functional theory (DFT) calculations. The computations allow to attribute the effect of oxidation on the magnetic response of the ConOm clusters to electron transfer from the cobalt 3d and 4s valence orbitals to oxygen. The cobalt 3d levels preferentially donate electrons of minority spin, but both spin orientations are involved in the transfer of cobalt 4s electrons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.