Abstract

AbstractThe influence of oxidation on the estimation of long-term creep rupture strength is investigated for 2.25% chromium (Cr)–1% molybdenum (Mo) steel specified as JIS STBA 24, JIS SCMV 4 NT, and ASTM A542/A542M by the Larson–Miller method using creep rupture data in the National Institute for Materials Science (NIMS) Creep Data Sheets at 450–650 °C for up to 313,000 h. The creep rupture data exhibit a change in slope of the stress versus time to rupture curves due to oxidation in air during 600 °C creep tests at 15,000–40,000 h and 650 °C tests at 2000–3500 h for different size specimens, which indicates degradation in creep life by the oxidation. The estimated 100,000 h creep rupture strength using regression analysis is increased by the elimination of long-term data degraded by the oxidation. Several metallurgical factors, such as the initial strength represented by the 0.2% proof stress at the creep test temperature and the concentration of aluminum (Al) impurity, also affect the creep life of the tested steel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call