Abstract

A numerical study incorporating three-dimensional Eulerian large deformation finite element analyses is performed to investigate the pullout process of horizontal square plate anchors in both hypothetical weightless soil and soil with self-weight. The validity of the numerical model is established through verification against published experimental and numerical results. The failure mechanisms during the pullout process under different conditions are then investigated. Three types of failure mechanism are observed; of which only two have been reported in the literature. The third mechanism identified in this study, which is a partially localized flow mechanism, is operative when the soil overburden ratio is not high enough to mobilize the full flow mechanism. The influence of soil self-weight is directly investigated by incorporating the density of the soil in the finite element model and maintaining the gravitational acceleration field throughout the analysis. The critical overburden ratio corresponding to the full transition to a localized plastic flow mechanism is identified in this study. The effect of the soil rigidity index (E/su) on the anchor uplift capability has not been systematically investigated in earlier studies. Contrary to the general failure mechanism and the full flow mechanism described in the literature, the capacity factor corresponding to this new mechanism increases with increasing E/su. The capacity factors for square plate anchors corresponding to different anchor embedment ratios, overburden ratios and E/su are provided in the form of design charts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call