Abstract

The cross-track profile of media noise is measured on a precision spinstand for oriented and nonoriented media. These data are correlated with magnetic force microscopy (MFM) images to determine the location of track-edge noise with high spatial resolution. A significant component of track-edge noise is located in a narrow band at the edge of bits recorded in opposition to the previously saturation-erased direction. This reverse erase-edge noise (REEN) increases as orientation ratio increases. The magnitude and distribution of REEN is consistent with a reverse-dc-erase mechanism. /spl delta/M data indicate a greater influence of magnetostatic and/or exchange coupling for the oriented media. Together with larger on-track reverse-dc-erase noise and higher supralinear transition noise, these results suggest enhanced collective magnetization reversal for the oriented media relative to the nonoriented media. MFM images also reveal the presence of narrow magnetic-dipolar strips at the track edges. These dipolar strips are generated by cross-track components of the head field. The track-edge dipole moment decreases as orientation ratio increases due to preferential alignment of easy axes along the down-track direction. These dipoles contribute to base line shift and are not a significant source of media noise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call